External Content

The following content is sourced from external partners. We cannot guarantee that it is suitable for the visually or hearing impaired.

(Bloomberg) -- Methods used by computers programmed to run a 350-year-old equation may also offer answers to bitcoin’s out-sized demand for electricity.

The Great Internet Mersenne Prime Search found and confirmed the biggest known prime number, a 23-million-digit-long figure discovered with the math of 16th century French monk Marin Mersenne, according to a statement earlier this month. That effort, along with other collaborative computing methods, are advancing the science of cryptography, which is essential to creating and tracking bitcoins.

“These ideas could be seen as intellectually connected,” said Seth Schoen, a senior technologist at San Francisco’s Electronic Frontier Foundation, which is offering a $150,000 bounty to the first person or group to discover a 100-million digit prime number. “Cryptocurrency mining could be seen as an indirect descendant of distributed computing projects.”

The process of searching for prime numbers -- which are at the foundation of cryptography -- shows how solving tedious equations can lead to scientific breakthroughs that have practical applications.

The meteoric rise of bitcoin and other cryptocurrencies is stirring debate at the highest levels of monetary policy making. Adherents are betting that trust in its blockchain technology for tracking transactions will eventually revolutionize how value is stored and transmitted. Detractors point to the massive energy consumed by the computers that are used to solve the mundane mathematical equations that keep the system going.

Bitcoin Has a Future and You Can Go Long or Short: QuickTake Q&A

Energy has always been part of bitcoin’s DNA. The person credited with creating the currency, identified only as Satoshi Nakamoto, devised the system that awards virtual coins for solving complex puzzles and uses an encrypted digital ledger to track all the work and every transaction.

Bounty hunters for prime numbers and cryptography hacker groups have helped to improve cryptocurrencies by showing people how to collectively compute problems in a distributed way, Schoen said. Bitcoin is an “odd fit” in this tradition because the math problems it solves aren’t particularly “useful or interesting for anything” outside its system.

“This energy is put to a productive use in one sense -- confirming the authenticity of bitcoin transactions,” Schoen wrote in an email. “Yet it seems disproportionate in many ways, particularly if another technical alternative could be found for confirming transactions while using much less energy.”

Quantum Computing

The EFF technologist, active in encryption for more than 20 years, emphasized that it’s the collaborative methods used in detecting very large prime numbers rather than the figures themselves that have the biggest impact on cryptography. Until the advent of quantum computing, most people are safe with three-digit encryption, he said.

A search for compromise is accelerating. Some researchers are trying to lower the energy needed for computer processing. Others have been tying cryptocurrency mining to math that solves real-world problems.

One example is gridcoin, a cryptocurrency mined by a global network of more than 23,000 computers that are connected with scientists at the University of California at Berkeley. Gridcoins are awarded in return for joining the Berkeley Open Infrastructure for Network Computing, or BOINC. That work “may lead to advances in medicine, biology, mathematics, science, climatology, particle and astrophysics,” according to the group’s website, which notes that the energy needed to mine gridcoin is a fraction of what bitcoin requires.

Another emerging cryptocurrency field uses so-called proof-of-space algorithms. Those could cap the amount of energy needed for mining and maintenance, according to Schoen. Any new alternative still will struggle to overcome bitcoin’s advantage as first-mover among digital currencies.

The Great Internet Mersenne Prime Search itself is an example of how collaborative networks programmed to run mundane equations can also be tuned to solve real-world problems. The Mersenne Prime Search software also doubles as a monitor making sure that participants’ computer systems are running properly and alerting them if something goes wrong, founder George Woltman wrote in an email.

“It’s clearer to see how the existence of bitcoin is making people better off,” Schoen said. “But it would definitely be interesting to see if cryptocurrencies in the future can align interests better by using proof-of-work problems with side effects that help solve other problems.”

(Updates with hackers in the seventh paragraph.)

To contact the reporter on this story: Jonathan Tirone in Vienna at jtirone@bloomberg.net.

To contact the editors responsible for this story: Reed Landberg at landberg@bloomberg.net, Todd White

©2018 Bloomberg L.P.

Neuer Inhalt

Horizontal Line


swissinfo EN

Teaser Join us on Facebook!

Join us on Facebook!

subscription form

Form for signing up for free newsletter.

Sign up for our free newsletters and get the top stories delivered to your inbox.







Click here to see more newsletters

Bloomberg